Intracellular Ca²⁺ signals are key triggers of aerobic glycolysis in primary astrocytes Univerza v Ljubljani

Anemari Horvat^{1,2}, Marko Muhič¹, Tina Smolič¹, Ena Begić¹, Robert Zorec^{1,2}, Marko Kreft^{1,2,3}, Nina Vardjan^{1,2}

¹Laboratory of Neuroendocrinology – Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

²Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia

³Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia

Introduction

During intense brain activity, astroglial aerobic glycolysis supports high-energy-demanding neurons by converting D-glucose to L-lactate that is transported to neurons, where it can be used as an energy fuel. Astroglial aerobic glycolysis is a highly regulated process that can be augmented via plasmalemmal receptors coupled to intracellular Ca²⁺- and cAMP-signals, but their individual role in regulation of aerobic glycolysis is not clear.

Aim of the study

To determine the role of Ca²⁺- and cAMP-signals in regulation of astroglial aerobic glycolysis.

Methods

Experiments were performed on primary rat cortical astrocytes expressing genetically encoded Dglucose and L-lactate fluorescence resonance energy transfer-based nanosensors, reporting changes in intracellular free D-glucose ([glc]_i) and L-lactate ([lac]_i) concentrations, respectively, using real-time microscopy. Astrocytes were treated with α_1 -/ β -adrenergic, β -adrenergic and purinergic receptor agonists to selectively activate intracellular Ca²⁺/cAMP-, cAMP-, and Ca²⁺signals, respectively.

celica biomedical

Fig. 4 Inhibition of glycogen shunt lowers [glc]_i and [lac]_i increase in astrocytes upon stimulation with α_1 -/ β -AR agonist. (a,b) Mean time-dependent changes in FRET signal reporting [glc], and [lac], (Glucose; Lactate; left panels), amplitude (Δ FRET (%); middle panels), and cumulative change (Cumulative Δ FRET; right panels) in the FRET signal in astrocytes expressing (a) nanosensor FLII¹²Pglu-700 μδ6 (Glucose) or (b) nanosensor Laconic (Lactate) in (Vehicle) and cells stimulated with control phenylephrine (PE; 100 μ M) in the presence (PE (+DAB); grey) and in the absence of 1,4-dideoxy-1,4-

imino-p-arabinitol (DAB), an inhibitor of glycogen shunt activity (PE; black). Black arrows indicate the time of stimulation. Note that the presence of DAB reduced the α_1 -AR-mediated increase in FLII¹²Pglu-700 $\mu\delta6$ and Laconic FRET signals. Numbers adjacent to the error bars represent the number of cells analysed. Data are presented as means ± SEM. In (a) and (b), left: **P=0.01 and P=0.26 comparison between last three data points (PE vs. PE (+DAB)), Student's t test, respectively. In (a) and (b), middle and right: *P=0.05 vs. control (Vehicle); *P=0.05 comparison between different stimuli; Kruskal–Wallis one-way ANOVA on ranks, followed by Dunn's test.

Fig. 5 Inhibition of the glycogen shunt abolishes the increase in [lac]_i upon simultaneous activation of astrocytes with β -AR and α_1 -/ β -AR agonists. (a,b) Mean time-dependent changes in FRET signal reporting [glc]_i and [lac]_i (Glucose; Lactate; left panels), amplitude (Δ FRET (%); middle panels), and cumulative change (Cumulative Δ FRET; right panels) in the FRET signal in astrocytes expressing (a) nanosensor FLII¹²Pglu-700 $\mu\delta6$ (Glucose) or (b) nanosensor Laconic (Lactate) in control (Vehicle) and in cells stimulated with isoprenaline (Iso; 200 μ M) and phenylephrine (PE; 100 μ M) in the presence (Iso + PE (+DAB); grey) and absence of 1,4-dideoxy-1,4-

Fig. 1 Simultaneous real-time measurements of α_1 - and β -AR-induced Ca²⁺ and cAMP signalling in single astrocytes. (a) Schematic representation of the procedure for the simultaneous experimental measurement of cAMP and Ca²⁺ signals. (**b**) Representative fluorescence images of astrocytes labelled with genetically encoded cAMP indicator Pink Flamindo (upper panels, red) and Ca²⁺ indicator Fluo-4 AM dye (lower panels, green). (c and d) Mean timedependent changes in the Pink Flamindo (red) and Fluo-4 (green) fluorescence intensity signals ($\Delta F/F_0$) after stimulation with (c) 200 μ M isoprenaline (Iso) and (d) 100 μ M phenylephrine (PE). Yellow arrowheads point to the cell of interest expressing Pink Flamindo (red) and labeled with Fluo-4 (green). Note that the addition of 100 μ M PE leads to an exponential increase in the [cAMP]_i along with a transient increase in [Ca²⁺]_i. Data are presented as means ± SEM.

Fig. 2 Activation of α_1 -/ β -adrenergic signalling increases **[glc]**_i **in astrocytes.** (**a–c**) Mean time-dependent changes in the FLII¹²Pglu-700 $\mu\delta6$ FRET signal (Glc Δ FRET), reporting $[glc]_i$, after stimulation with (a) 200 μ M isoprenaline (Iso), (b) 100 μ M phenylephrine (PE) in 3 mM glucose (black circles) or 0 mM glucose (grey circles (0 mM glc), and $(c) 100 \mu \text{M PE}$ after pre-treatment with 200 µM Iso. Note that the addition of PE, but not Iso, leads to a significant exponential increase in the FRET signal, indicating α_1 -AR-mediated increase in [glc]_i. ***P=0.001; comparison between the last three data points, Student's t test. (d, e) Mean (d) amplitude (Glc Δ FRET (%)) and (e) cumulative change (Cumulative Glc Δ FRET) in the FRET signal after the addition of various stimuli. Numbers adjacent to the error bars represent the number of cells analysed. Data are presented as means ±

imino-p-arabinitol (DAB), an inhibitor of glycogen shunt activity (Iso + PE; black). Black arrows indicate the time of stimulation. Note that the presence of DAB inhibited α_1 - and β -AR-mediated increase in the Laconic but not in the FLII¹²Pglu-700 μδ6 FRET signal. Numbers adjacent to the error bars represent the number of cells analysed. Data are presented as means ± SEM. In (a) and (b), left: P=0.3 and [#]P=0.05, comparison between the last three data points (Iso + PE vs. Iso + PE (+DAB)), Student's t test, respectively. In (a) and (b), middle and right: *P=0.05 vs. control (Vehicle); #P=0.05 comparison between different stimuli, Kruskal–Wallis one-way ANOVA on ranks, followed by Dunn's test.

Fig. 6 Stimulation of purinergic P_2R/Ca^{2+} signalling increases [glc], and [lac], in astrocytes. (a,b) Mean timedependent changes in FRET signal reporting [glc]_i and $[lac]_i$ (Glucose, Lactate; left panels), amplitude (Δ FRET (%); middle panels), and cumulative change (Cumulative Δ FRET; right panels) in the FRET signal in astrocytes expressing (a) nanosensor FLII¹²Pglu-700 μδ6 (Glucose)

Fig. 7 Increase of cytosolic Ca^{2+} by ionomycin, a Ca^{2+} ionophore, increases [glc]_i and [lac]_i in astrocytes. (a,b) Mean time-dependent changes in FRET signal reporting [glc], and [lac], (Glucose; Lactate; left panels), amplitude $(\Delta FRET (\%); middle panels), and cumulative change$ (Cumulative Δ FRET; right panels) in the FRET signal in astrocytes expressing (a) nanosensor FLII¹²Pglu-700 μδ6

SEM. *P=0.05 vs. control (Vehicle); #P=0.05 comparison between different stimuli, Kruskal–Wallis one-way ANOVA on ranks, followed by Dunn's test.

Fig. 3 Activation of α_1 -/ β -adrenergic signalling increases **[lac]**_i **in astrocytes.** (**a–c**) Mean time-dependent changes in the Laconic FRET signal (Lac Δ FRET) after stimulation with (a) 200 μ M isoprenaline (Iso), (b) 100 μ M phenylephrine (PE) in the presence (3 mM, black circles) or absence of extracellular glucose (0 mM glc; grey circles), and (c) 100 μ M PE after pre-treatment with 200 μM Iso. Note that the addition of PE, but not Iso, increased the FRET signal significantly vs. control, indicating α_1 -AR-mediated increase in [lac]_i. ***P*=0.01; comparison between last three data points, Student's t test. (**d-e**) Mean (d) amplitude (Lac Δ FRET (%)) and (e) cumulative change (Cumulative Lac Δ FRET) in the FRET signal after addition of various stimuli. Numbers adjacent to the error bars represent the number of cells analysed. Data are presented as means ± SEM. **P*=0.05 *vs.* control

(Vehicle); #P=0.05 comparison between different stimuli, Kruskal–Wallis one-way ANOVA on ranks, followed by Dunn's test.

or (b) nanosensor Laconic (Lactate) upon stimulation with ATP (100 μ M). Numbers adjacent to the error bars represent the number of cells analysed. Data are presented as means ± SEM. ***P=0.001, Mann–Whitney U test.

Conclusions

- Ca²⁺ signals are key triggers of augmented aerobic glycolysis in astrocytes.
- **cAMP aids** to Ca²⁺-driven increase in aerobic glycolysis in astrocytes.
- Aerobic glycolysis in astrocytes depends on extracellular D-glucose and glycogen shunt activity.

(Glucose) or (b) nanosensor Laconic (Lactate) upon stimulation with ionomycin, a Ca²⁺ ionophore (lono; 10 μ M). Numbers adjacent to the error bars represent the number of cells analysed. Data are presented as means ± SEM. ***P=0.001, Mann–Whitney U test.

REFERENCES

Horvat and Muhič et al., 2021. Ca²⁺ as the prime trigger of aerobic glycolysis in astrocytes. *Cell Calcium*, 95:102368. **ACKNOWLEDGEMENTS**

The authors' work was supported by grants from the Slovenian Research Agency (P3-0310, J3-2523, J3-9266, J3-9255), Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP) and COST Action CA18133 (ERNEST).

© 2021 Anemari Horvat